If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-30b=144
We move all terms to the left:
b^2-30b-(144)=0
a = 1; b = -30; c = -144;
Δ = b2-4ac
Δ = -302-4·1·(-144)
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{41}}{2*1}=\frac{30-6\sqrt{41}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{41}}{2*1}=\frac{30+6\sqrt{41}}{2} $
| 13=6x+7* | | 5x+10=5* | | B^2-30b+144=0 | | 5x-10=20;x | | 7x-8=-8+3x | | (x-3)/6=15 | | -5x-2x=14-5x-2x=14 | | -14.5=-3.3+v/7 | | 3(2x-5)-4x=15+2x | | 7x+19=−2x+55,x=4 | | 1/2x−7=−4 | | 4(v+5)=-4(5v-3)+6v | | 3d+4=2+3d=(1)/(2) | | 4x−11=9 | | -7w-17-5w=-10w+13 | | 222=159-x | | 3x2–18x=0 | | 4x+12=67 | | 12x^2+8x-20=100 | | (4x-4)(3x+5)=100 | | -4(-8+5)=-32x-26 | | 3^(2x–4)=27 | | -5a+54=5 | | -3(1-7b)=-16+8b | | x3x+5=65 | | X-130=-3x-7(4+2x) | | 5y+10=15y | | 7u-28=7() | | 13=-4x÷9 | | x-7(1,34-0,32x)=0,01x | | 3(x+6)=10x+31 | | 24+4(m-8)=0 |